Measuring and Mapping the Universe

hlegel/BigB

BAO and MS-DESI

- B. Grossan. Use requires attribution of all sources -

outline .

What is BAO?

What is MS-DESI?

Fibers?

Why do I care?

- B. Grossan. Use requires attribution of all sources -

DECOUPLING

- The story of the universe starts at the Big Bang and a lot happens up to the time of cosmic microwave background (CMB).
- What we see in the CMB radio maps is the time when the universe became transparent, (so we can see the CMB), called

the time of matter-radiation decoupling (or surface of last scatter)

Dark Energy Science

Dark energy constitutes 72% of the energy-density of the Universe Discovered in 1998, 1999 from supernova cosmology.

Measurements of Omega and Lambda from 42 High-Redshift Supernovae, Perlmutter et al 1999 Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Riess et al 1998

Confirmed in 2003 from microwave background.

First-Year Wilkinson Microwave Anisotropy Probe (WMAP)¹ Observations: Determination of Cosmological Parameters, Spergel et al 2003

WHAT IS BAO?

Baryons = "stuff" like atoms, not
 γ and not ν.

- BAO = Baryon Acoustic Oscillations
 - Characteristic size hot spots (=density peaks) in cosmic microwavemm background (CMB) ...
 - become "frozen in" to expansion, and...
 - same oscillations
 observed today as
 concentrations in
 galaxies (baryonic
 matter).

BAO~ RIPPLE IN POND, FLASH-FROZEN

Size "frozen-in" to expansion at de-coupling (in co-moving coords)

Early time - photons and baryon equilibrium

photons and baryons move each other After Recombination photons de-couple, freestream

Late -expansion, baryons → galaxies at density peaks

> baryons retain characteristic size

- B. Grossan. Use requires attribution of all sources -

heavy baryons slow,

motion of wave stalls

BAO~ RIPPLE IN POND, FLASH-FROZEN

Size "frozen-in" to expansion at de-coupling (in co-moving coords)

First: Hot plasma: density perturbation: spreads like ripple in pond. $\rightarrow \bigcirc \rightarrow \bigcirc$

Early time - photons and baryon equilibrium

After Recombination photons de-couple, freestream

Late -expansion, baryons → galaxies at density peaks

size scale \sim sound wave travel distance by $t_{decoupling}$

- B. Grossan. Use requires attribution of all sources -

WHY DO WE CARE ABOUT BAO?

- The BAO size grows with expansion, due to....
- cosmology...
- including dark energy (DE),
- BUT we know the physics, i.e. the instrinsic properties of the BAO very well... and measured at CMB time
- Can use BAO as a **probe** of expansion ⇒cosmology parameters

STANDARD RULER

- Supernovae = Standard
 Candle
 - known power lets you predict brightness
- BAO=standard ruler in comoving coords
 - known initial size → predict apparent size (z)
 - Note: two ways of measuring, parallel (z) and perpendicular (angles) to line of sight.

(Little) BOSS - State of the Art

FIVE YEAR project, 2009-2015

- B. Grossan. Use requires attribution of all sources -

(Little) BOSS - State of the Art

FIVE YEAR project, 2009-2015

1.5 million galaxies at 0.15 < z < 0.7 160,000 QSOs at 2.1 < z < 3.5

But BOSS has Limits!

1.6 million spectra

Photos D. Schlegel

Multi-fiber spectrograph 1000 fibers

- \rightarrow 1000 spectra
 - \rightarrow 1000 redshifts per observation

Technicians plug fibers

But BOSS has Limits!

Photos D. Schlegel

- Multi-fiber spectrograph 1000 fibers
 - \rightarrow 1000 spectra
 - \rightarrow 1000 redshifts per observation

Technicians plug fibers

1.6 million spectra

Doubling to 3 million barely possible, takes full decade!

- B. Grossan. Use requires attribution of all sources

WHY MORE?

- This is the era of Precision Cosmology
 - Want to measure very subtle effect to < 1 %
 - The more space you sample, the smaller the error

NEED MORE
 PRECISION!

FLASHBACK: DO YOU REMEMBER "FROM EMISSION TO DETECTORS LECTURE?

- On the Theory spectrum at left, the various theories are drawn
- On top of the X-ray spectrum at right, in instrumental units (counts observed) we see the ONE theory line that fits --->
- Observations allowed us to measure the spectral parameters

FLASHBACK: APPLIED

- The plot we saw 2 slides back is a great example of this, If theory shows differences in observations, it will allow us to measure the right parameters:
 - >Theoretical lines with different parameter values (color) are drawn over observations, here the correlation function (the typical separation observed in the galaxies in the galaxy survey).
 - >The actual figure shows that, for our error bars, we CANNOT measure what we want (as often happens).

WISH LIST FOR COSMOLOGY

- Dark Energy:
 - BAO z=0 → 3.5
 - Redshift Space Distortions $z=0 \rightarrow 3.5$
 - > (Guzzo et al 2008, Blake et al 2011)
- Particle Physics from Astronomy: Neutrino Masses
- Inflation: Detect Non-Gaussianity

All can be studied with galaxy z-surveys

SURVEYS

Remember, red shift surveys are 3-D !!!

movie removed, but try http://www.youtube.com/watch?v=_pDZW-RAXcc

- B. Grossan. Use requires attribution of all sources -

BUT HERE'S WHAT WE NEED...

- Luminous Red Galaxies (20X more than BOSS)
- BAO in Quasar Absorption Lines (15 X BOSS, to z=3)
- Emission Line Galaxies to z=1.6

BUT HERE'S WHAT WE NEED...

 Luminous Red Galaxies (20X more than BOSS)

 BAO in Quasar Absorption Lines (15 X BOSS, to z=3)

 Emission Line Galaxies to z=1.6

Impossible, you would need 10⁷ spectra! ...Right?

- B. Grossan. Use requires attribution of all sources -

BigBOSS collaboration

- Brookhaven National Laboratory
- Ewha Womans University, Korea
- Fermi National Accelerator Laboratory
- French Participation Group
 - APC, IAP- Paris; CPP, CPT, LAP Marseille; CEA, IRFU – Saclay
- Johns Hopkins University
- Lawrence Berkeley National Laboratory
- National Optical Astronomy Observatory
- New York University
- The Ohio State University
- Shanghai Astronomical Observatory
- SLAC National Accelerator Laboratory
- Spanish Participation Group
 - IAA, Granada; IAC, Tenerife; ICC, Barcelona; IFT, Madrid; U. Valencia

- UK Participation Group
 - Durham, Edinburgh, UC London, Portsmouth
- University of California, Berkeley
- University of Kansas
- University of Michigan
- University of Pittsburgh
- University of Science and Technology of China
- University of California, Santa Cruz/Lick
 Observatory
- University of Utah
- Yale University

Since all these slides were made, BigBOSS has changed it's name to MS-DESI

... Medium Scale Dark Energy Spectroscopic Experiment

desi.lbl.gov

KEY OF BB INSTRUMENT: 5000 SPECTRA PER POINTING VIA ROBOT POSITIONERS

5000 positioners put fiber at target position

Kitt Peak 4-m (Mayall) at Kitt Peak, Arizona USA today...

Capable of

- holding heavy corrector
- 3 deg. field

Mayall with **BigBOSS**

Corrector

- 3 degree field at the focal plate to 5000 fibers on 12 mm pitch.
- Tip-tilt-focus compensation mechanism.
- Atmospheric chromatic dispersion compensator.
- Mount for fiber view camera.
- Mount for f/8 secondary mirror Cass instruments.

Thanks to FNAL DEC group for Blnaco 4-m mechanical model

plane

Focal

10 February 2011

4

Construct BigBOSS instrument:

3 deg diameter FOV prime focus corrector 5000 fiber positioner 10x3 spectrographs, 3400-10,600 Ang

Conduct BigBOSS Key Project

495 nights at Mayall 4-m 14,000 deg² survey 50,000,000 spectra

- 20,000,000+ galaxy redshifts
- ▶ 3,000,000+ QSOs

Science Goals: BAO from 20+ million redshifts

Sensitivity to new physics scales as volume surveys -- # of modes

BigBOSS will enlarge redshift-space maps to 24 million objects 10X larger than SDSS + SDSS-II + BOSS 2.5 million QSOs z=4 r=4.0 Gp 18 million \vec{ELGs} r=3.0 Gpc/h z=2 z=1.5 r=2.0 Gpc/h z=14 million LRGs z=0.7 z=0.5 r=1.0 Gpc/h r=0.5 Gpc/h z=0.2

1. Luminous Red Galaxies (LRGs)

LRGs have been the workhorse of BAO surveys (SDSS, BOSS) All LRG spectra look nearly identical to z~1

Entire spectrum used for redshift, dominant features are "4000 Angstrom break" and "Ca H+K lines" to z=1.2

2. Emission Line Galaxies (ELGs)

ELGs unique signature of [O II] doublet, detectable from z=0 to z=1.7 *Well-studied as the ~5% brightest galaxies in the DEEP2 survey* ELGs drive BigBOSS wavelength coverage, throughput, & resolution

Dec. 6, 2011 David Schlegel P1 Science Overview

3. QSOs as tracers

QSO spectra very obvious even at very faint S/N BOSS survey easily identifies to g=22, BigBOSS will extend to g=23.5

Lya Forest BAO

Two simultaneous spectroscopic surveys from 2009-2014

 \rightarrow BAO from 1.5 million galaxies at z=0.3, 0.6

→ BAO from QSOs at 2.2<z<3

Simulation of the IGM (R. Cen) Neutral H in 25 h⁻¹Mpc box

MEASUREMENTS: DARK ENERGY

- From precise measurements of the power spectrum...
 - W₀ (DE Equation of State Parameter)
 - W_a (derivative; $W_a = 0$ is cosmological constant.)

Dark energy from Stage IV BAO

— Geometric probe with 0.3-1% precision from z=0.5 -> 3

MEASURE VS VIA POWER SPECTRUM

• Ratio of Power Spectra - $P_{with v}(k)/P_{without}(k)$

Terrestrial experiments measure Δm^2 of neutrino masses BOSS and BigBOSS measure the summed mass

Sensitivity is 0.024 eV Measured from power spectrum of galaxy map

c.f. Anze Slosar's "Measuring the Neutrino Mass..."

BOSS + BigBOSS: Mapping the linear modes in the un

Here, m_nu is the mass of the lightest nu, because you know the two spacings and total.

Sum of neutrino masses measurable from BAO surveys

Small-scale suppression of galaxy P(k) and QSO LyA Expect to distinguish normal/inverted hierarchy

BigBOSS will substantially improve slope of primordial spectrum

Combines with Planck Significance will depend upon number of modes in BigBOSS (k_{max})

$$P(k) \propto (k/k_0)^{n_{\rm s} + \frac{1}{2}\alpha_s \ln(k/k_0)}$$

BigBOSS will have high sensitivity to non-Gaussianities in the early Universe

Planck sensitivity f_{NL}=5, BigBOSS f_{NL}=3.9 Bispectrum of BigBOSS may improve this further

$$\Phi = \phi + f_{\rm NL} \left(\phi^2 - \left\langle \phi^2 \right\rangle \right) + \dots$$

Experimentally: term in $P(k) \sim (1+k^{-2})$

c.f. Pat McDonald: "Projections..."

Dec. 6, 2011 David Schlegel P1 Science Overview

REDSHIFT SPACE DISTORTIONS > (Guzzo et al 2008, Blake et al 2011)

- Small Scale: clusters elongated in z direction
 "finger of god" effect
 - random peculiar velocities on top of expansion
- Kaiser Effect larger scales
 - non-random, coherent infall velocities
- Difference in correlation function $I \lor . \bot$ to line of sight \Rightarrow ratio very sensitive to cosmological parameters.

Linder et al.: 1105.1194, 1109.1846 Reid & White: 1105.4165 Seljak, McDonald et al: 1109.1609, 1109.1888 Saito et al.: 1006.0699, 1101.4723

-20

Separation on the sky, o (Mpc/h)

Dec. 6, 2011 David Schlegel P1 Science Overview

BigBOSS "full-sky" possible

•"Full-sky" survey possible by moving instrument south after 2020

OPTICAL FIBERS CRITICAL

• See Lecture on Measuring Optical Fiber Performance!

BigBOSS designed as BAO+RSD stage IV

— 20 million galaxies + 2.5 million QSOs

z = 1

z=0.7

z=0.5

- BAO: Geometry, 1% precision from z=0.5 \rightarrow 1.6 and z=2 \rightarrow 3
- RSD: Gravitational growth, 2% precision @ 5 redshifts
- Neutrino masses at 0.024 eV
- Inflation probe using more modes than Planck

BigBOSS is a stage IV experiment to deliver by 2020

z=0.2

```
-Won't get started for a few years; you could think about working on it!
```

r=2.0 Gpc/h

r=1.0 Gpc/h

r=0.5 Gpc/h

r=5.0 Gr

BigBOSS designed as BAO+RSD stage IV

— 20 million galaxies + 2.5 million QSOs

7 =

- BAO: Geometry, 1% precision from z=0.5 \rightarrow 1.6 and z=2 \rightarrow 3
- RSD: Gravitational growth, 2% precision @ 5 redshifts
- Neutrino masses at 0.024 eV
- Inflation probe using more modes than Planck

BigBOSS is a stage IV experiment to deliver by 2020

r = 5.0 Gr

THANKS!

- B. Grossan. Use requires attribution of all sources -